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Introduction 

Choline is required to make the phospholipids phos- 
phatidylcholine, lysophosphatidylcholine, choline 
plasmalogen, and sphingomyelin--essential compo- 
nents of all membranes. It is a precursor for the 
biosynthesis of the neurotransmitter acetylcholine and 

1 also is an important source of labile methyl groups. 
Much attention has been given to the effects of supple- 
mental choline upon brain function--it  has been sug- 
gested that such treatments enhance acetylcholine 
synthesis and release, z-7 Still unresolved, however, is 
the question of whether choline is normally required as 
part of the human diet. 

Several lines of evidence suggest that choline is in- 
deed an essential nutrient for humans: 

I. Human cells grown in culture have an absolute 
requirement for choline. 8 

2. Healthy humans fed diets deficient in choline have 
decreased plasma choline concentrations (dis- 
cussed later in this review). 

3. Malnourished humans have diminished plasma or 
serum choline concentrations. 9'~° 

4. Humans fed by vein with solutions containing little 
or no choline develop liver dysfunction that is 
similar to that seen in choline deficient animals. 9 

5. In other mammals, including the monkey, choline 
deficiency results in severe liver dysfunction.~'l~ 

The major reasons choline is considered a dispensable 
nutrient for humans are: 

1. There is an endogenous pathway for the de novo 
biosynthesis of choline moiety via the sequential 
methylation of phosphatidylethanolamine. 12 

2. It has been difficult to identify a choline deficiency 
syndrome in healthy humans because most com- 
mon foods contain choline and because the demand 
for choline is modified by the rate of growth of an 

Address reprint requests to Dr. Steven Zeisel, Department of Nutri- 
tion, University of North Carolina, McGarran-Greenberg Hall, 
CB#7400, Chapel Hill, NC 27599-7400, USA. 
Supported by grants from the National Institutes of Health 
(HD16727, HD26553, and RR-00533), and the American Institute for 
Cancer Research. 

individual and by complex inter-relationships 
between choline and the nutrients methionine, 
folic acid and Vitamin Bt2 (lipotropes). 

3. No one has tried to experimentally induce choline 
deficiency in normal humans. 

Obviously, the above arguments do not prove or 
disprove that humans require dietary choline. Dimin- 
ished tissue levels of a nutrient associated with re- 
moval of the nutrient from the diet are suggestive of a 
nutrient requirement, but deficiency should be associ- 
ated with deterioration of organ function if a nutrient is 
essential. The presence of a pathway for endogenous 
synthesis does not make a nutrient dispensable. Most 
mammals can synthesize choline moiety, yet they be- 
come severely (often fatally) ill if deprived of choline. 
Under certain circumstances vitamin D is an essential 
nutrient--deficiency is associated with organ dysfunc- 
t i o n - y e t  endogenous pathways exist for the biosyn- 
thesis of vitamin D. In this review, I will discuss the 
expected biochemical and physiological uses for 
choline, the expected effects of choline deficiency and 
will present evidence that there is a requirement for 
choline in the human's diet. 

Dietary sources of choline 

Calculations of dietary choline intake are based upon 
estimates of the free choline and phosphatidylcholine 
content of foods .  13-17 Older assay procedures for 
choline were imprecise, making many of the avail- 
able data unreliable. We have recently measured 
the choline, phosphatidylcholine and sphingomyelin 
contents of some foods using a gas chromatography/ 
mass spectrometric assay (Table 1). Our own measure- 
ments of the lysophosphatidylcholine, glycero- 
phosphocholine and phosphocholine contents of rat 
tissues, ~8 show that these choline-containing com- 
pounds are present in high concentrations in many tis- 
sues (e.g., muscle concentrations of these three esters 
were approximately 100 nmol/g each). Thus, the foods 
eaten by humans probably also contain significant 
amounts of these esters of choline. Phosphatidyl- 
choline is also often added to processed foods because 
it acts as an emulsifying agent or as an antioxidant. 

Healthy humans in the United States probably in- 
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Table 1 Choline content of some common foods 

Choline deficiency: Zeisel 

Concentration (nmol/g) 
Food Choline Phosphatidylcholine Sphingomyelin 

Apple 27 280 15 
Banana 240 37 20 
Beef liver 5831 43500 1850 
Beef steak 75 6030 506 
Butter 42 1760 460 
Cauliflower 1306 2770 183 
Corn oil 3 12 5 
Coffee 1010 15 23 
Cucumber 218 76 27 
Egg 42 52000 2250 
Ginger ale 2 4 3 
Grape juice 475 15 5 
Iceberg Lettuce 2930 132 50 
Margarine 30 450 15 
Milk (bovine, whole) 150 148 82 
Orange 200 490 24 
Peanut butter 3895 3937 9 
Peanuts 4546 4960 78 
Potato 511 300 26 
Tomato 430 52 32 
Whole wheat bread 968 340 11 

Choline, phosphatidylcholine, and sphingomyelin were measured using a gas chromatography/mass spectrometry assay is in foods prepared 
in the form that they would normally be consumed, 

gest at least 6 g of phosphatidylcholine/day (100 mg/ 
day of this amount deriving from addition to foods 
during processing). Total choline intake in the adult 
human (as free choline and the choline in phos- 
phatidylcholine and other choline esters) probably is in 
excess of 600 to 1,000 mg/day. Consumption of choline 
will be higher in humans ingesting phosphatidylcholine 
(also called lecithin) a dietary "health-food" supple- 
ment. The capsules or granules of lecithin sold over 
the counter are usually impure, (only 35% phos- 
phatidylcholine). In the adult human, serum choline 
concentrations fluctuate over an approximately 2-fold 
range when common choline-containing foods are in- 
gested 19 (see Figure 1). 

Milk is the first, and often the sole food for the 
human neonate. It contains approximately 200 nmol/ 
ml each of free choline, phosphatidylcholine and 
sphingomyelin (colostrum and transitional milk have 3 
to 4-fold higher free choline content; bovine milk and 
formulae derived from it are similar in choline content 
to mature human milk. Soy bean derived formulae can 
have 3 to 4-fold higher choline concentration. Mam- 
mary is capable of actively accumulating choline from 
maternal blood 2° (see discussion below) and of de 
novo synthesis of choline molecules 21 (see discus- 
sion below). For these reasons, human mammary can 
achieve choline concentrations in milk that are 60 
times those found in maternal plasma, whereas 
artificial formulas may have a choline content differing 
greatly from that of mother's milk. ~7 Neonatal animals 
and humans have exceptionally high blood choline 
concentrations. 22,23 

The extent to which dietary choline is bioavailable 
depends upon the efficiency of its absorption from the 

intestine. Some ingested choline is metabolized before 
it can be absorbed from the gut. Gut bacteria degrade 
it to form betaine and to make methylamines. 24-27 The 
free choline surviving these fates is absorbed all along 
the small intestine. 25,28,29 At this time, no other compo- 
nent of the diet has been identified as competing with 
choline for transport by intestinal carriers. 

Both pancreatic secretions and intestinal mucosal 
cells contain enzymes capable of hydrolyzing phos- 
phatidylcholine in the diet. Phospholipase A2 (which 
cleaves the B-fatty acid moiety) is found in pancreatic 
juice and in the intestinal brush border. 3° Within the 
gut mucosal cell, phospholipase A~ cleaves the a-fatty 
acid, and phospholipase B cleaves both fatty acids. 3~ 
Quantitatively, digestion by pancreatic lipase is the 
most important process. The net result is that most 
ingested phosphatidylcholine is absorbed as lysophos- 
phatidylcholine (deacylated in the I~ position). 32 Within 
the cells of the gut wall, lysophosphatidylcholine can 
be deacylated to form glycerophosphocholine, or it 
can be acylated to reconstitute phosphatidylcho- 
line. 31'32 Two lysophosphatidylcholine molecules are 
converted to a phosphatidylcholine and a glycero- 
phosphocholine molecule. For this reason, approxi- 
mately twice as many phosphatidylcholine molecules 
are absorbed from the gut as are reconstituted and 
secreted from the mucosal cell into the lymphatic 
circulation. 32 

Glycerophosphocholine is also present in the diet 
and is formed from dietary phosphatidylcholine. 
Within the gut wall, glycerophosphocholine diesterase 
(L-3-glycerophosphocholine glycerophosphohydro- 
lase) catalyzes the conversion of glycerophos- 
phocholine to glycerophosphate and free choline. This 
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Figure 1 Plasma choline concentrations in normal humans. Six 
adult humans ingested diets of common foods designed to be low 
in choline content (100 mg choline/clay) or normal in choline con- 
tent (650 mg choline/day). Meal times are indicated by arrows. 
Breakfast in the normal choline diet included 150 g eggs, lunch 
included 90 g peanut butter--both are rich in choline content. 
Plasma was obtained at regular intervals and assayed for choline 
content using a radioenzyme assay. Data are presented as mean _+ 
SEM (n = 6/point). From Zeisel et al. 19 with permission. 

free choline enters the portal circulation of the liver. 32 
Phosphocholine is also present in small amounts in the 
diet. It is rapidly degraded by intenstinal alkaline phos- 
phatases, liberating free choline and inorganic phos- 
phate. 

The phosphatidylcholine absorbed and then re- 
formed within gut mucosal cells enters the lymphatic 
circulation, and then enters the blood. Many tissues 
possess enzymes that are capable of degrading phos- 
phatidylcholines and lysophosphatidylcholines. Al- 
though we are sure that blood choline concentration 
increases after humans eat phosphatidylcholine, 33 we 
do not know which organ or which enzyme activity 
is responsible for the liberation of most of the free 
choline seen. 

Uptake of choline by tissues 

All tissues accumulate choline, but uptake by liver, 
kidney, mammary gland, placenta and brain are of 

34 36 especial importance. - Most tissues take up choline 
by a combination of transport processes (diffusion and 
mediated transport) such as have been described in 
brain, liver, kidney, erythrocytes, placenta, and intes- 
tine.28,35,37-41 

Choline is accumulated by liver via an active uptake 
system, and much of it is converted to betaine, phos- 
phocholine and phosphatidylcholine. 35,36 Hepatectomy 
increases the half-life of choline and results in an in- 
crease in blood choline concentration. The rate at 
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which liver takes up choline is sufficient to explain the 
rapid disappearance of choline injected systemically. 

The kidney also accumulates choline. 4°'4z45 Some of 
this choline appears in the urine unchanged, but most 
is oxidized within kidney to form betaine. 46 This be- 
taine may serve as an Important osmoprotectant 
within kidney. 47 Mean free choline concentration in 
the plasma of azotemic humans is several times greater 
than in normal controls and hemodialysis rapidly re- 
moves choline from the plasma. 48 Renal transplanta- 
tion in humans lowers plasma choline from 30 txM in 
the azotemic patient to 15 ~M within 1 day .  49 

Uptake of choline by mammary cells enables this 
tissue to concentrate choline almost 70-fold versus ma- 
ternal blood. 2° Both mediated (energy dependent, 
sodium requiring process) and passive transport mech- 
anisms contribute to choline uptake in the mammary 
epithelial cell. Mediated uptake predominates at cho- 
line concentrations below 100 ~M (when intracellular 
choline concentrations were higher than those of the 
medium). Serum choline concentration in the rat or 
human is normally approximately 10 ~xM, and exceeds 
50 ~M only after pharmacologic doses of choline or 
choline-containing compounds have been adminis- 
tered. 33 Concentrations as high as 100 t~M have never 
been reported. The metabolism of choline by mam- 
mary epithelial cells has not been carefully character- 
ized. We have observed that choline is converted to 
betaine, phosphocholine and phosphatidylcholine, as 
expected (see below). 2° In addition, we observed that 
an unkown compound was formed that is not sar- 
cosine, dimethylglycine, or any obvious metabolite of 
choline. 

The placenta also actively accumulates cho- 
line. 37,5°-52 There are specific transport systems for 
choline on both sides of the syncytiotrophoblast. ~3 
Much of this choline is used to make acetylcholine, 54 
the function of which is unknown at this time, and to 
deliver choline to the fetus. 

A specific carrier mechanism transports free cho- 
line across the blood-brain barrier. 55 This carrier has a 
low affinity for choline (Kin apparent = 440 ~M). Thus at 
physiologic concentrations of choline in serum (10 
p~M), this carrier is unsaturated and is able to carry 
choline into the brain at a rate that is proportional to 
serum choline concentration. 55 In the neonate this 
choline transporter has very high capacity. 56 The ca- 
pacity for choline transport across the blood-brain bar- 
rier decreases as rats age (Vrnax apparent was 50 fold 
lower in 24 month old than in 2 month old rats). 57 This 
may mean that the aged brain is much more suscepti- 
ble to decreased availability of choline than is young 
brain. Choline is an important constitutent of brain, 
yet more unesterified choline leaves the brian, in vivo, 
than enters it when plasma choline concentration is 
less than 15 IxM; 58-6° at  higher plasma choline concen- 
trations there is always net influx of choline into 
brain. 61 It ispossible that esterified choline might also 
enter brain,62 although there is minimal permeability of 
the blood-brain barrier to lysophosphatidylcholine and 
phosphatidylcholine. 6o 



Choline metabolism 
Choline can be acetylated, phosphorylated, and ox- 
idized (Figure 2). 

Acetylation of  choline 

Only a small fraction of dietary choline is acetylated, 
catalyzed by the activity of choline acetyltransferase 
(EC 2.3.1.6) 36'63 This enzyme is highly concentrated in 
the terminals of cholinergic neurons, 64 but it is also 
present in such non-nervous tissues as the placenta. 65 
The availability of choline and acetyl-CoA influence 
choline acetyltransferase activity, z-5 In brain it is un- 
likely that choline acetyltransferase is saturated with 
either of its substrates, so that choline (and possibly 
acetyl-CoA) availability determines the rate of acetyl- 
choline synthesis. 66 Some investigators report that ad- 
ministration of choline or phosphatidylcholine results 
in the accumulation of acetylcholine within brain 
neurons, 2-5 whereas others observe that such accelera- 
tion of acetylcholine synthesis by choline administra- 
tion can only be detected after pretreatments with 
agents that cause cholinergic neurons to fire rap- 

6 67 71 idly. ' - Increased brain acetylcholine synthesis is as- 
sociated with an augmented release into the synapse of 
this neurotransmitter. A temporal dissociation be- 
tween choline administration and effects on brain 
acetylcholine synthesis and release has been ob- 
served. 68 Choline taken up by brain may first enter a 
storage pool (perhaps the phosphatidylcholine in mem- 
branes) before being converted to acetylcholine. 

homocyste 
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Oxidation of  choline 

A major use for choline is via irreversible oxidation 
forming betaine, an important methyl donor. Once be- 
taine is formed it cannot be reduced to reform choline; 
however, it can donate a methyl group to homocys- 
teine, thereby producing dimethylglycine and methio- 
nine. Dimethylglycine is converted to sarcosine and 
then to glycine, producing a l-carbon fragment. Thus, 
the oxidation pathway acts to diminish the availability 
of choline to tissues while, at the same time, scaveng- 
ing some methyl groups. Much greater amounts of 
choline are oxidized to form betaine (9 ixmol/hr/g) than 
are phosphorylated to form phosphocholine (1 ixmol/ 
hr/g) by rat liver. 72 The metabolism of choline to form 
betaine is slower in the neonatal than in the older 
rat23'72'73; thus tissue choline has a longer half-life in the 
neonate. In vivo, the rate of betaine formation from 
administered radiolabelled choline was slower in 3-day 
old than in 10-day old rats (0.15 ~mol/hr/rat at 3 days 
versus 0.69 ~mol/hr/rat at 10 days). 23 The rate of phos- 
phocholine formation was the same in 3 and 10 day old 
rats (3.3 ~mol/hr/rat). 23 As measured in vitro, betaine 
formation (choline dehydrogenase and betaine al- 
dehyde dehydrogenase activities) in liver, increased 
between birth and 40 days of age (from 0.5 I~mol be- 
taine formed/min/g liver on day 1, to 5 p.mol/min/g 
liver on day 40). 

Betaine is formed from choline via the intermedi- 
ate betaine aldehyde. Choline dehydrogenase (EC 
1.1.99.1) catalyzes the conversion of choline to betaine 
aldehyde and uses molecular oxygen as the electron 

P h o s p h a t i d y l c h o l i n e  

l CDP-choline:diacylglycerol 
cholinephosphotransferase 

C D P - c h o l i n e  

Dimethylglycine I . . . . .  < 
~ . ~  Methionine ~ S-adenosylmethionine 
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Trimethylamine 
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Figure 2 MetaboLism of choline, 
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acceptor; this activity also is capable of converting 
betaine aldehyde to betaine in the presence of NAD. TM 
Choline dehydrogenase in mammalian liver and kidney 
is mitochondrial, located on the matrix side of the inner 
membrane. 73'75'76 There is another enzyme, betaine 
aldehyde dehydrogenase (EC 1.2.1.8), which also cat- 
alyzes conversion of betaine aldehyde to betaine. This 
enzyme requires N A D + ,  and is found in both 
mitochondria (this mitochondrial enzyme may be iden- 
tical to choline dehydrogenase) and c y t o s o l .  76 Choline 
dehydrogenase activity is present in rat liver > kidney 
> brain > lung and is not detected in m u s c l e .  77 Activi- 
ties in rat liver and kidney are 100 fold higher than in 
other o r g a n s .  77 Human liver and kidney have activity 
(kidney 7-fold more than liver) but less than that mea- 
sured in the rat. 77 In the kidney, choline dehydroge- 
nase activity is located in the inner medulla and proxi- 
mal tubules. 47 Mitochondria extracted with n-pentane 
lose choline dehydrogenase activity, which can be re- 
stored by addition of ubiquinone TM or coenzyme Q2 .74 
It has been suggested that pyrroloquinoline quinone 
(PQQ) is the endogenous c o f a c t o r .  79'8° 

The mitochondrial choline oxidation system con- 
sists of the following steps: 

1. choline transporter from the cytosol, 
2. oxidation of choline to betaine aldehyde by choline 

dehydrogenase, 
3. oxidation of betaine aldehyde to betaine by betaine 

aldehyde dehydrogenase, and 
4. release of betaine from the matrix into the cytosol. 

Since large concentrations of choline have been found 
in the mitochondrial matrix, and choline uptake from 
the medium to the matrix occurs at rates faster than 
the maximal rates of choline oxidation, it is believed 
that the oxidation per se is rate limiting in the overall 
process. 81-83 Regulation of choline oxidation could oc- 
cur at any of these four steps. Betaine aldehyde is an 
inhibitor of choline dehydrogenase (0.1 mM betaine 
aldehyde diminished activity by 50%. 74,82 Choline up- 
take into mitochondria occurs against a concentration 
gradient, 83 betaine leaves via a special transport mech- 
anism 8~ but it has been reported that betaine aldehyde 
only leaves in permeablized mitochondria. 82 Choline 
dehydrogenase activity decreased when animals were 
fed a choline deficient diet. 84 

We have observed that liver mitochondria can form 
trimethylamine (TMA) from choline via betaine al- 
dehyde. 85 Our data suggest that betaine aldehyde may 
be an intermediate formed during conversion of cho- 
line to TMA. Studies on the metabolism of organic 
arsenic compounds also suggest that TMA may be 
formed from betaine aldehyde. Arsenocholine, found 
in fish and crustaceans, is converted to arsenobetaine 
aldehyde and to trimethylarsenine oxide and trimeth- 
ylarsenine by rat liver. 86'87 This activity is localized in 
the mitochondria. 87 These recent observations suggest 
that we must consider changes in TMA formation from 
betaine aldehyde as potential means for regulation of 
flux through choline oxidation pathways. Once betaine 
aldehyde is generated it may be further oxidized to 

betaine, or it may be converted to TMA and acetal- 
dehyde (this latter compound is a postulated second 
product of this reaction; we are currently investigating 
its chemical identity). 

During the oxidation of choline, NADH is gener- 
ated which can be oxidized resulting in the generation 
of ATP. ATP decreases the Vmax of choline dehydro- 
genase, while AMP increases it. 82 

Phosphorylation of choline 
The phosphorylation of choline is catalyzed by choline 
kinase (EC 2.7.1.32) using Mg2+-ATP. 88-9° This en- 
zyme is widely distributed in mammalian tissues in- 
cluding the liver, brain, kidney, and lung. 88-92 It is a 
cytosolic enzyme 88 and in liver is present as three iso- 
zymes.91.93 Choline kinase has a pH optimum of 8 to 9 
and a Km apparent for ATP of 2 mM and for choline of 30 
I.zM. 91 Purified enzyme from rat kidney exists as a di- 
mer with two 42,000 kDa units. 94 Choline kinase activ- 
ity in liver is induced by treatment with choline, car- 
bon tetrachloride and insulin. 93 Adenosine inhibits 
choline kinase. 95 Phosphorylation of choline is the first 
step in the major pathway for phosphatidylcholine 
synthesis.91'96 CTP : phosphocholine cytidylyltransfer- 
ase (EC 2.7.7.15) catalyzes the synthesis of CDP- 
choline from CTP and phosphocholine. This enzyme's 
activity is rate limiting for the pathway, and is present 
in both cytosolic and membrane bound fractions. 9j 
The membrane associated cytidylyltransferase in- 
teracts with phospholipids and is activated, while the 
cytosolic form is an inactive reservoir of the enzyme. 97 
Translocation of the enzyme from cytosol to mem- 
brane is regulated by three mechanisms: hydrophobic 
interactions with membranes, the phosphatidylcholine 
content of membranes, and phosphorylation of the 
enzyme. Fatty acids and diacylglycerol cause cytidy- 
lyltransferase to bind to membranes, probably by 
creating a hydrophobic complex. 98 The phosphatidyl- 
choline content of the endoplasmic reticular mem- 
branes influences the ability of cytidylyltransferase to 
bind to this membrane--when phosphatidylcholine 
content of membranes is high the enzyme disas- 
sociates from the membrane and becomes inactive. 99 
Cytidylyltransferase is also inactivated and released 
from the membrane when it is phosphorylated by a 
cAMP dependent kinase.93'l°°' 1ol A cytosolic phospha- 
tase removes the phosphorus and makes the enzyme 
more likely to translocate when fatty acids are pres- 
ent. 93'1°1 In choline deficient hepatocytes most cytidyl- 
yltransferase is associated with membranes of the 
endoplasmic reticulum, and therefore is activated. 1°~ 
We observed that, during choline deficiency, whatever 
choline was available was converted to phosphatidyl- 
choline. We suggest that when choline supplies are 
limited phosphatidylcholine synthesis takes prece- 
dence over other uses for choline. Despite such shunt- 
ing of choline, eventually choline deficiency decreases 
the absolute contribution of the CDP-pathway (the 
pathway is ultimately limited by choline availability). 

Once CDP-choline is formed it is rapidly combined 
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with diacylglycerol, forming phosphatidylcholine in a 
reaction catalyzed by CDP-choline: 1,2,diacylglycerol 
choline phosphotransferase (EC 2.7.8.2). This enzyme 
is located on the cytoplasmic surface of the endoplas- 
mic reticulum. 91 

De novo biosynthesis  o f  choline 

Three enzymatic pathways catalyze phosphatidylcho- 
line biosynthesis, yet only one generates new choline 
molecules. The cytidine diphosphocholine (CDP- 
choline) and base exchange pathways do not cause a 
net synthesis of choline, but only redistribute preexist- 
ing molecules. 96:°2 The only source of choline other 
than diet is from the de novo biosynthesis of phos- 
phatidylcholine catalyzed by phosphatidylethanol- 
amine-N-methyltransferase (PeMT; EC 2.1. I. 17). This 
enzyme synthesizes phosphatidylcholine via sequen- 
tial methylation of phosphatidylethanolamine using S- 
adenosylmethionine as a methyl donor. ~°3q°6 Most 
PeMT activity is found in the liver, 1°7 but significant 
activity is present in brain ~°4'1°8 and mammary gland 21 
and detectable activity is found in other tissues. 

PeMT from liver microsomes of adult rats has been 
purified to apparent homogeneity. ~°6 A single integral 
membrane protein with a molecular mass of 18.3 kDa 
catalyzes the three methylations required to convert 
phosphatidylethanolamine to phosphatidyl-monometh- 
ylethanolamine (PMME), phosphatidyl-dimethyl- 
ethanolamine (PDME) and finally phosphatidylcholine 
(using S-adenosylmethionine as the methyl donor). 
Both intermediates are bound to the enzyme and do 
not diffuse away. 119 The phospholipid precursors and 
products appear to compete for a single catalytic 
site.l~9 The first methylation (phosphatidyl- 
ethanolamine ~ PMME) is rate limiting, u9 Thus, 
under physiologic conditions, PMME and PDME 
never accumulate. ~2° Though most data support the 
hypothesis that there is a single catalytic site for all 
three methylations catalyzed by PeMT, it is difficult to 
reconcile this model with the observation of Higgins 
that intermediates translocate across the membrane 
bilayer during formation of phosphatidylcholine by 
PeMT. 121 

There are no accurate estimates of the activity 
of phosphatidylethanolamine-N-methyltransferase in 
vivo. Investigators have attempted to assess activity 
by measuring excretion of labile methyl groups in hu- 
mans eating diets devoid of choline. 122:23 These stud- 
ies have assumed that choline can only be derived 
from the diet or from phosphatidylethanolamine-N- 
methyltransferase activity, but such assumptions are 
not valid, as choline can also, at least temporarily, be 
withdrawn from storage pools such as the phos- 
phatidylcholine in membranes. Best estimates, based 
upon in vitro data, are that 15 to 40% of the phos- 
phatidylcholine present in liver is synthesized via the 
phosphatidylethanolamine-N-methyltransferase path- 
way, with the remainder coming from the CDP path- 
way. 107,124 PeMT activity is minimal in the liver of the 
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fetus and newborn rat and increases to a maximum at 6 
to l0 days postnatal, thereafter declining slightly. ~25~27 

The methylation pathway may be especially im- 
portant in brain, where it provides choline for ace- 
tylcholine synthesis. 128 In brain, PeMT is primarily 
localized within nerve endings. 1°4,1°s The phosphatidyl- 
choline formed by this pathway in brain constitutes a 
metabolic pool that turns over rapidly, liberating free 
choline, 128 some of which may be available as a precur- 
sor of a neurotransmitter, acetylcholine. The activity 
of PeMT changes in a complex fashion during the post- 
natal development of rat brain.l°3 Synthesis of phos- 
phatidylcholine was highest in brains of neonatal ani- 
mals (2 days of age) because of the presence of 
relatively large amounts of a novel form of PeMT that 
catalyzed the first (and probably rate-limiting) methyl- 
ation. This form of PeMT has a low affinity for S- 
adenosylmethionine [requiring 90 txM S-adenosyl- 
methionine to reach half-maximal velocity] and 
could not be detected in brains of rats older than 5 
days of age. This novel PeMT was very similar to the 
form of PeMT present in the mammary epithelial 
cell. 21 Later in the animals' lives, brain PMME was 
synthesized by a PeMT that had a high affinity for S- 
adenosylmethionine (apparent Km 1.6 ixM) and whose 
activity reached its maximum by 12 to 20 days of age. 
This activity (Vma×), however, was lower than that of 
the neonatal form of PeMT that catalyzed the conver- 
sion of phosphatidylethanolamine to PMME. The ac- 
tivity of PeMT that catalyzed the conversion to PDME 
to phosphatidylcholine (not the rate-limiting step) 
was highest in the 12 to 20-day-old brain and had a 
tendency to decrease thereafter. Its affinity for S- 
adenosylmethionine was fairly constant (apparent 
Km 100 I.zM). In the brains of newborn rats S- 
adenosylmethionine concentrations are 40 to 50 nmol/ 
g of tissue and S-adenosylhomocysteine levels are 1 
nmol/g. 126.129 These levels probably are sufficient to en- 
able the neonatal form of PeMT to maintain high rates 
of PMME synthesis, and it is in this concentration 
range that this enzyme is sensitive to changes in S- 
adenosylmethionine levels. Once the PeMT is of 
the adult type (exhibiting high affinity for S- 
adenosylmethionine), it probably is saturated with S- 
adenosylmethionine and the rate of phosphatidyl- 
choline formation would be expected to be slower and 
less affected by substrate (See discussion below on the 
S-adenosylmethionine/S-adenosylhomocysteine ratio 
and regulation of PeMT). Hoffman e t  a/., 126 studied 
developmental changes in PeMT activity of rat brain 
microsomes (we studied whole brain) and found a 
fairly constant specific activity in all ages examined. 
Chida and Arakawa 13° observed that phosphatidyl- 
choline synthesis via the methylation pathway was 
highest in young rats in vivo, a finding confirmed by 
our observations in vitro. Developmental changes in 
the activity or structure of purified PeMT have never 
been characterized. 

The regulation of PeMT activity has not been com- 
pletely characterized. In adult liver, PeMT seems to be 
regulated by the availability of phosphatidylethanol- 

J. Nutr. Biochem., 1990, vol. 1, July 337 



Review 

amine, the S-adenosylmethionine/S-adenosylhomo- 
cysteine concentration ratio, and by the composition 
of the boundary lipids which surround this transmem- 
brane protein. Manipulations which depleted phos- 
phatidylethanolamine levels in membranes tended to 
diminish formation of phosphatidylcholine via the 
PeMT enzyme--manipulations which increased phos- 
phatidylethanolamine levels in membranes tended to 
enhance formation of phosphatidylcholine via the 
PeMT enzyme. TM In these studies, enzyme mass was 
constitutive and activity was determined by the 
changed availability of phosphatidylethanolamine. 
Under in vitro conditions, the inclusion of phos- 
phatidylcholine in the phospholipid vesicle presented 
to PeMT enhanced activity, and Ridgway and Vance 
have suggested that the enzyme may have a secondary 
phosphatidylcholine binding site which modulates 
PeMT activity. 119 The phosphatidylethanolamine con- 
tent of rat liver mitochondria is relatively constant dur- 
ing development; phosphatidylcholine concentrations 
are 1.6-fold higher in the fetal liver. 132 PeMT displays 
selectivity for molecular species of phosphatidyl- 
ethanolamine in vivo (two or more double bonds are 
preferred in the substrate phosphatidylethanolamine), 
while in vitro the enzyme does not display specificity 
for molecular species of phosphatidylethanolamine, 
PMME or PDME. 133 The availability of S-adenosylme- 
thionine relative to S-adenosylhomocysteine also 
determines PeMT activity.It9'134 S-adenosylhomo- 
cysteine, a product of the reactions, inhibits the 
methyltransferase. 119'134 In liver, S-adenosylmethi- 
onine concentrations are 70 nmol/g from birth 
through 30 days of age. 134 S-adenosylhomo- 
cysteine is 5 nmol/g in neonatal rat liver and is 14 
nmol/g in adu l t s .  126'129 The S-adenosylmethionine/S- 
adenosylhomocysteine ratio in rat liver drops from 
12:1 at birth to 5:1 at 30 days of age.  TM At an S- 
adenosylmethionine/S-adenosylhomocysteine ratio of 
12:1 fifteen percent of total PeMT activity (phos- 
phatidylethanolamine methylation) would be inhib- 
ited, while at a ratio of 5 : l, thirty percent of activity 
would be inhibited. TM Thus, if S-adenosylmethi- 
onine were the sole regulator of hepatic PeMT, 
activity in liver should have been highest during 
the perinatal period--i t  was not. As discussed 
earlier, in brain the availability of S-adenosyl- 
methionine enhances the activity of perinatal PeMT 
(the enzyme has comparatively low affinity for S-ade- 
nosylmethionine). Choline deficiency is associated 
with increased hepatic PeMT activity measured in 
vitro, 135"136 but this is only seen when exogenous S-ade- 
nosylmethionine is added to the incubation mixture. 84 
The availability of S-adenosylmethionine in the liver of 
choline deficient animals limits the activity of this 
pathway. 137,138 

In addition to precursor and product regulation of 
PeMT, several other factors influence activity of this 
enzyme in liver. PeMT is inhibited by increased con- 
centration of fatty ac ids ;  139 unsaturated fatty acids 
were the most effective inhibitors. Hashizume and col- 

leagues 140 have isolated two different protein inhibitors 
of PeMT in rat liver cytosol. Both appear to inhibit the 
methylation of phosphatidylethanolamine ~ PMME 
but not the subsequent methylations. These studies 
were performed using crude enzyme preparations. A 
peptide isolated from liver, methinin, inhibits several 
methyltransferases and might be the endogenous in- 
hibitor of PeMT. 141,142 

The regulation of PeMT by hormones has been the 
focus of a number of reports, but there is no clear story 
that has emerged. 12° In brain and red blood cells, 
stimulation of noradrenergic receptors acts to increase 
the rate of phosphatidylethanolamine methylation. ~16 
Glucagon inhibits activity in vivo and stimulates in 
vitro. 120 Insulin also has variable effects. 120 We did not 
observe differences in PeMT activity in brain due to 
sex differences between postnatal days 9 to 61.1°3 
However, PeMT activity in some tissues is influenced 
by sex hormones. In rat pituitary, estradiol activates 
PeMT 6-fold. 143 PeMT activity in livers of adult female 
rats was 2-fold greater than in male rats. 1°7'144 It has 
been suggested that PeMT is phosphorylated by a 
cAMP dependent serine kinase and by protein kinase 
C, and that activity is regulated by such phosphoryla- 
tion. 145-147 However,  the purified PeMT used in these 
studies contained a 50 kDa protein which coeluted 
with PeMT but was not associated with enzyme activ- 
ity. 148'149 This 50 kDa protein was the site of phos- 
phorylation. PeMT (18 kDa protein) can be phos- 
phorylated in vitro by a cAMP dependent serine 
kinase.149 However, in vitro PeMT was not phosphory- 
lated in hepatocytes treated with a cAMP analog.149 

Choline and methyl-group metabolism 

The demand for choline as a methyl donor is probably 
the major factor which determines how rapidly a diet 
deficient in choline will induce pathology. The path- 
ways of choline and 1-carbon metabolism intersect at 
the formation of methionine from homocysteine (see 
Figure 3). 122'150'151 Methionine is regenerated from 
homocysteine in a reaction catalyzed by betaine: 
homocysteine methyltransferase, in which betaine, a 
metabolite of choline, serves as the methyl donor.15° 
Betaine concentrations in livers of choline deficient 
rats are markedly diminished,15°-152 as are total folate 
concentrations. 153 The only alternative mechanism 
for regeneration of methionine is via a reaction cata- 
lyzed by 5-methyltetrahydrofolate:homocysteine 
methyltransferase (EC 2. I. 1.13) which uses a methyl 
group generated de novo from the l-carbon pool. 15o,154 
Methionine is converted to S-adenosylmethionine in a 
reaction catalyzed by methionine adenosyl transfer- 
ase. S-adenosylmethionine is the active methylating 
agent for many enzymatic methylations. 

A disturbance in folate or methionine metabolism 
results in changes in choline metabolism and visa 
versa. During choline deficiency hepatic choline con- 
centration decreases rapidly (see Figure 4). At the 
same time, hepatic S-adenosylmethionine concentra- 
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tions are decreased (see Figure 5). 155-a58 It has been 
suggested that the availability of methionine limits S- 
adenosylmethionine synthesis during choline defi- 
ciency because the 5-methyltetrahydrofolate homo- 
cysteine methyltransferase reaction alone cannot fulfill 
the total requirement for methionine and the betaine 
dependent remethylation of homocysteine is limited 
by the availability of betaine. ~5° Choline deficiency is 
also associated with inhibition of hepatic glycine- 
N-methyltransferase activity (EC 2.1.1.20), which 
is believed to be important for the removal of excess S- 
adenosylmethionine from liver. ~59 Folate metabolism 
is also altered in choline deficiency. 153 Methotrexate 
which is widely used in the treatment of cancer, 
psoriasis, and rheumatoid arthritis, limits the availabil- 
ity of methyl groups by competitively inhibiting dihydro- 
folate reductase, a key enzyme in intracellular folate 
metabolism. When 1-carbon metabolism is poisoned, 
the only alternative to choline as a source of methyl 
groups for regeneration of methionine is lost. Hepatic 
S-adenosylmethionine and betaine concentrations are 
diminished after treatment with methotrexate. 16°-163 
Choline supplementation reverses the fatty liver 
caused by MTX administration. 163-166 Methotrexate 
treatment increases the susceptibility of tissues to 
chemical carcinogens, 167 perhaps by creating a relative 
state of choline deficiency (see discussion below). 

Biochemical and physiologic consequences of 
choline deficiency 

Chronic ingestion of a diet deficient in choline has ma- 
jor consequences that include hepatic, renal, pancre- 
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Figure 5 Hepatic concentrations of S-adenosylmethionine, S- 
adenosylhomocysteine, and methionine during choline deficiency. 
Rats were pair fed a control or choline deficient diet for 6 weeks. 
Liver was collected at timed intervals, and S-adenosylmethionine, 
S-adenosylhomocysteine and methionine were assayed using high 
pressure liquid chromatography and a UV absorbance detector. 
Data are expressed as mean percent control (n = 4-5/point). 
Taken from Zeisel eta/. 158 with permission. 

atic, memory, and growth disorders. In the rat, 168 
169 170 171 172 173 175 11 hamster, guinea pig, pig ' dog, - monkey, 

176 177 178 trout, quail and chicken, choline deficiency re- 
sults in liver dysfunction. Hepatocyte turnover is 
greatly increased during choline deficiency. 179,180 Dur- 
ing choline deficiency, extremely large amounts of 
lipid (mainly triglycerides) can accumulate in liver, 
eventually filling the entire hepatocyte. 168.181-184 Fatty 
infiltration of the liver starts in the central area of the 
lobule and spreads peripherally. TM This process is dif- 
ferent from that occuring in kwashiorkor or essential 
amino acid deficiency, where fatty infiltration usually 
begins in the portal area of the lobule. The accumu- 
lation of triacylglycerol within hepatocytes begins 
within hours after rats are started on a choline 
deficient diet, peaks within the first 6 months (at > 
2000 mg/liver; in control rats was 28 mg/liver) and 
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then diminishes as liver becomes fibrotic. 185 Triacyl- 
glycerol accumulation occurs because triglyceride 
must be packaged as very low density lipopro- 
tein (VLDL) to be exported from liver. Phosphati- 
dylcholine is an essential component of VLDL; 
other phospholipids cannot substitute, ls2,~s3 Electron- 
microscopic studies of hepatocytes from rats fed a 
choline deficient diet have demonstrated ultrastruc- 
tural abnormalities of the endoplasmic reticulum and 
Golgi system associated with delayed VLDL trans- 
port. ~86 Hepatocytes, isolated from choline-deficient 
rats were unable to export VLDL until choline or 
methionine was made available. 182 The methylation of 
phosphatidylethanolamine can be blocked with 3- 
deazadenosine without disturbing hepatic lipoprotein 
secretion. 187 

The defect in hepatic VLDL excretion may be the 
most apparent problem, but there are abnormalities of 
secretion in other organs as well in choline deficient 
animals. When animals are made choline deficient and 
treated with ethionine, they develop pancreatitis 
caused by inability to secrete zymogen granules nor- 
mally.lSS'~S9 This treatment does not affect membrane 
fusion-fission, but seems to interfere specifically with 
exocytosis. 190 

Renal function is also compromised, with abnormal 
concentrating ability, free water reabsorption, sodium 
excretion, glomerular filtration rate, renal plasma flow, 
and gross renal hemorrhage. 13s-142J91-194 Infertility, 
growth impairment, bony abnormalities, decreased 
hematopoiesis, and hypertension have also been re- 
ported to be associated with diets low in choline con- 
tent. 195-198 

Maintaining adult rats on a choline deficient diet 
lowered brain choline, but did not lower brain acetyl- 
choline levels in some studies. 67'199 However, Nagler 
reported lower levels of choline and actelylcholine in 
brain, kidney and intestine of choline deficient rats. 2°° 
Striatal and hippocampal slices from adult rats fed a 
choline deficient diet for 30 to 40 days had diminished 
acetylcholine content and synthesis, and formed less 
free choline during incubations (from hydrolysis of 
membrane phosphatidylcholine). 69 The absence of 
choline in the medium superfusing electrically stimu- 
lated rat brain slices diminished the release of acetyl- 
choline from these slices, as compared to spontaneous 
and evoked release in the presence of physiologic (20 
IxM) concentrations of choline. TM 

Choline supplementation increases the number of 
dendritic spines in the cerebral cortex of old 
mice. 2°2'2°3 In these same animals, memory, as as- 
sessed by learning performance was improved by cho- 
line supplementation. TM A modest degree of choline 
deficiency (3 mg/day versus 12 mg/day in controls; fed 
these diets between the ages of 8.5 to 18 months) had 
no effect on dendritic spine density. 2°2'2°3 Unfortu- 
nately, the total methyl content of the choline deficient 
diet used was not enumerated, and no biochemical as- 
sessment of choline pool sizes were made. This makes 
it difficult to be certain that a state of choline 
deficiency actually existed. 

Choline deficiency may alter the hypothalamic- 
pituitary-adrenal response to stressors. Plasma and 
adrenal corticosterone were the same in unstressed 
control and choline deficient rats. However, after au- 
ditory or hypercapnic stress, the deficient rats had 
impaired cortisol response, z°5 

The bladder is normally under the influence of para- 
sympathetic (cholinergic) stimulation. Choline defi- 
cient mice exhibited a 46% increase over controls in 
contractile respones of isolated bladders, while mice 
on a choline enriched diet showed a 15% decrease in 
contractile response. 2°6 These data suggest that mus- 
carinic receptors are up-regulated (i.e., increased in 
number) during choline deficiency. 

Choline deficiency and carnitine 
Carnitine is a cofactor for long-chain acetylCoA car- 
nitine transferase; human deficiency syndromes have 
been identified. 2°7 Rats fed a choline-deficient diet had 
reduced levels of carnitine in liver, heart, and skeletal 
muscle. 2°8'2°9 This finding has been attributed to a 
methyl-group deficiency, i.e., carnitine is derived from 
trimethyllysine. However, a single injection of choline 
(but not of methionine, betaine, or sarcosine) was able 
to raise the concentration of hepatic carnitine in these 
animals to control values within 1.5 hours. 2°9 This sug- 
gests that choline was capable of facilitating carnitine 
release from some storage pool, as de novo synthesis 
of carnitine would have taken much more time. Para- 
doxically, plasma carnitine was higher in choline- 
deficient rats, 2°9 probably because transport into tis- 
sues was inhibited. Perhaps a choline molecule must 
exit the cell in order to flip the carnitine carrier from 
the inside to the outside of the plasma membrane. 

Choline deficiency and hepatocarcinogenesis 
Choline deficient animals (fed diets just adequate in 
methionine and folate content; i.e., lipotrope limited) 
are much more likely to develop hepatocarcino- 
mas.179'180 '185 '210-218 Deficiency alone is sufficient to trig- 
ger carcinogenesis, there is no need for exposure to 
any known carcinogen. 1s°'~85'219 Chandar and Lom- 
bardi 185 observed that 26% of rats fed a choline 
deficient diet for 16 months (versus 0% of controls) 
developed hepatocellular carcinoma. These investiga- 
tors also made the intriguing observation that if, after 
12 months of being fed a choline devoid diet, rats were 
fed a choline sufficient diet for 4 months the incidence 
of hepatocellular carcinoma increased to 73%. In this 
latter group, foci of enzyme-altered hepatocytes which 
synthesize ~-glutamyl transpeptidase (GGT) were de- 
tected at a 10-fold higher rate than in controls.a85 These 
observations are consistent with the hypothesis that, 
during a crucial period, choline deficiency can either 
initiate carcinogenesis, or promote endogenously initi- 
ated cells, or make hepatocytes susceptible to initia- 
tion. The enhancement of carcinogenesis observed 
when choline was restored to the diet after a year of 
deprivation may have occurred because choline 
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deficiency inhibited growth or survival of initiated 
cells by increasing the rate of death of all hepato- 
cytes. 22° Perhaps when choline was restored initiated 
cells were able to grow and multiply more rapidly. 

There are several mechanisms which have been 
suggested for the cancer-promoting effect of a choline 
devoid diet. In the choline deficient liver there is a 
progressive increase in cell proliferation, related to re- 
generation after parenchymal cell death. 185'219'22° Cell 
proliferation, with associated increased rate of DNA 
synthesis, could be the cause of greater sensitivity to 
chemical carcinogens. 179 Other stimuli for increased 
DNA synthesis can be associated with carcinogenesis: 
hepatectomy and necrogenesis chemicals are exam- 
ples. However, Shinozuka and Lombardi 218 found that 
the overall rate of liver cell proliferation could be dis- 
sociated from the rate at which preneoplastic lesions 
formed during choline deficiency, suggesting that cell 
proliferation is not the sole condition acting as a 
promoter of liver cancer. Methylation of DNA is im- 
portant for the regulation of expression of genetic 
information. It has been suggested that the under- 
methylation of DNA (decreased 5-methylcytosine 
content in nuclear DNA), observed during choline de- 
ficiency (despite adequate dietary methionine), is re- 
sponsible for carcinogenesis. 216 Another proposed 
mechanism is based upon the observation that, when 
rats are fed a choline deficient diet, increased lipid 
peroxidation occurs within liver (presence of diene 
conjugates in lipids isolated from purified hepatic nu- 
clei). 22x Lipid peroxides in the nucleus could be a 
source of free radicals which could modify DNA, and 
case carcinogenesis. Though each of these factors 
probably contributes to carcinogenesis in choline 
deficient animals, none of the above hypotheses is en- 
tirely satisfactory. 

1,2-sn-diacylglycerol (1,2-DAG) is an important in- 
termediate for the biosynthesis of triacylglycerol and 
membrane phospholipids. Choline-containing phos- 
pholipids are one of the important sources of 1,2-DAG 
release during transmembrane signalling, zz2'223 1,2- 
DAG is also a second messenger, formed when plasma 
membrane receptors for certain hormones, neuro- 
transmitters or growth factors are coupled to phos- 
pholipase C. 222 The 1,2-DAG molecule remains within 
the membrane after hydrolysis of phospholipids, and 
can activate a regulatory enzyme, protein kinase C 
( P K C ) .  224 During activation, which requires the pres- 
ence of calcium and phosphatidylserine, PKC is trans- 
located from the cytosol to the plasma membrane. 225 
1,2-DAG markedly increases the affinity of PKC for 
calcium, thereby activating the enzyme without a net 
increase in intraceUular calcium concentration. 224 1,2- 
DAGs containing unsaturated fatty acids are the 
most potent in this respect, while 1,3- or 2,3- 
sn-diacylglycerols neither activate or inhibit the en- 
zyme. 224 This means that the 2,3-sn-diacylglycerol 
liberated from triglyceride by the action of lipoprotein 
lipase, and heparin-released hepatic lipase will not ac- 
tivate P K C .  224 The appearance of 1,2-DAG in mem- 
branes is usually transient, and therefore PKC is ac- 
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tivated only for a short time after a receptor has been 
stimulated. Previously most interest was focussed 
upon 1,2-DAG present in plasma membranes as an 
activator of PKC, but Azhar, et al., 226 and Buckley et 
al. 227 have recently reported that protein kinase C ac- 
tivity is associated with hepatic microsomal and nu- 
clear membranes as well as with plasma membranes. 

Several lines of evidence indicate that cancers 
might develop secondary to abnormalities in PKC- 
mediated signal transduction. Some of the most potent 
mitogens and tumor promoters, the phorbol esters, are 
analogs of 1,2-DAG which have higher affinity than 
1,2-DAG for the same site on PKC; they cause PKC 
translocation to membranes and long lasting activa- 
tion. 224 Prolonged activation of PKC by these com- 
pounds leads to down regulation of the enzyme (i.e., 
proteolysis to a form which is not bound to the mem- 
brane. It is believed that the tumor promoting effects 
of phorbol esters may be explained by their interac- 
tions with PKC. Many mitogens activate PKC, and 
this activation can be very impressive. Buckley et 
a l .  227 found that prolactin, a mitogen for liver, stimu- 
lated PKC activity several hundred-fold in rat liver 
nuclear membrane; probably by a phospholipid-l,2- 
DAG mediated pathway. Gene expression abnor- 
malities that are often associated with tumors, can also 
be associated with alterations in 1,2-DAG and PKC 
mediated pathways. Fibroblasts normally respond to 
excess 1,2-DAG by activating diacylglycerol kinase 
activity (the enzyme translocates from cytosol to 
membranes); in erbB-transformed fibroblasts this does 
not occur. 228 1,2-DAG is elevated in vivo in ras- 
transformed liver of neonatal transgenic mice bearing 
a hybrid gene construct consisting of mouse albumin 
enhancer/promoter fused to the coding sequence of an 
activated human Ha-ras oncogene. 229 NIH 3T3 cells 
transformed with Ha-ras or Ki-ras, v-src, and v-fms 
oncogenes have elevated 1,2-DAG levels as well as 
tonic activation and partial down regulation of 
PKC. 23°'231 Activated PKC, in turn, may participate in 
mechanisms leading to the induction of expression of 
the c-myc oncogene, z32"233 Fibroblasts, transfected 
with a gene for a mutant PKC which is constantly in 
the active conformation, become transformed and 
form tumors in mice. TM This is the strongest evidence 
to date that activation of PKC is a key event in carcin- 
ogenesis. 

We have observed that 1,2-DAG accumulates in 
choline deficient liver (Figure 6). 184 1,2-DAG content 
of plasma membrane was significantly increased as 
well (Figure 7). We did not observe an increase in the 
1,2-DAG content of mitochondria or microsomes. 
Thus, the increase in 1,2-DAG appears to be specific, 
occurring at a site where 1,2-DAG is known to be able 
to activate PKC. In human control livers we measure 
similar concentrations of 1,2-DAG (unpublished data). 

It has been reported that the sum of 1,2-DAG and 
2,3-sn-DAG increased from 300 to 1800 nmol/g in rat 
liver after one week of choline deficiency. 235 Unfor- 
tunately, at the time of these investigations, no con- 
venient technique existed to measure 1,2-DAG 
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specifically. Recent studies indicate that the physio- 
logical state of the cell determines the ratio of 1,2- 
DAG to 2,3sn-DAG. For example in the parotid, 2,3- 
sn-DAG constituted approximately 8% of DAG at rest, 
and stimulation of [3-adrenergic receptors specifically 
increased the formation of 2,3-sn-DAG, such that it 
constituted over 30% of the total DAG.236 This 2,3-sn- 
DAG was ineffective in stimulating PKC activity. 236 
Thus, it is important that we observed specific in- 
creases in 1,2-DAG levels in choline deficient liver 
because only this stereoisomer can activate PKC. 
Choline deficiency was associated with a remarkable 
increase in hepatic 1,2-DAG concentrations, reaching 
values higher than those occurring after stimulation of 
a receptor linked to phospholipase C activation (e.g., 
vasopressin receptor 237,23s and of the order of mag- 
nitude needed to activate PKC in vitro. The concentra- 
tions of 1,2-DAG achieved in choline deficient liver 
were several fold higher than the concentrations 
of exogenous 1,2-DAG used to activate PKC in 
platelets 239'24° or to modify responses to etl-adrenergic 
receptors in the liver. 241 The activation, as well as 
down regulation, of PKC has been observed in cells 
transformed with Ha-ras or Ki-ras, v-src, and v-fms 
oncogenes which have elevated 1,2-DAG levels. 23°,231 
It is expected that accumulation of 1,2-DAG in cells 
from choline deficient animals may result in one of two 
phenomenona, a) constitutive translocation of PKC to 
the membrane such that membrane-associated PKC 
activity is higher in these cells than that in the controls 
and that therefore there would be less enzyme activity 
that could be translated to the membrane by the action 
of phorbol ester, or b) an initial translocation of PKC 
to the membrane that will occur immediately with the 
onset of increased intracellular 1,2-DAG concentra- 
tions, followed by a decrease in PKC activity in the 
cells [due to higher PKC protein turnover]. In prelimi- 
nary studies using animals fed a choline deficient diet 
for 6 weeks we did not observe a change in the amount 
of membrane associated PKC activity. 242 Other inves- 
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Figure 6 Total 1,2-diacylglycerol in rat liver. Rats were pair-fed 
control or choline-devoid diets for six weeks. Hepatic 1,2-sn- 
diacylglycerol was measured by a radioenzymatic assay. Results 
are expressed as means _+ SEM, Statistical significance of differ- 
ences between groups was determined by t-test. From Blusztajn 
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Figure 7 1,2-diacylglycerol in plasma membranes of rat liver. 
Rats were pair-fed a choline deficient or choline-containing (con- 
trol) diet for six weeks. Membranes were prepared from liver using 
the method of Aronson and Touster. 2s6 1,2-sn-diacylglycerol was 
measured by a radioenzymatic assay. Results are expressed as 
means -- SE (n = 3/group). * = p < 0.05 by t-test. 

tigators, studying shorter periods of choline deficiency 
in rats (one to four weeks) also did not find that PKC 
translocated to membranes. 243 It is possible that PKC 
will be activated (translocated) after longer periods of 
choline deficiency, or that only one of the several iso- 
zymes of PKC in liver 244'245 are activated. Metabolites 
generated from some choline-containing phospholipids 
(sphingosine and lysosphingoliPids from sphingomy- 
elin, and lysophosphatidylcholine from phosphatidyl- 
choline) act as negative effectors modulating PKC ac- 
tivation, z~2 Perhaps net activation of PKC depends 
upon a balance between production of 1,2-DAG and 
these negative effectors. 

Pathophysiologic events which could result in 
choline deficiency 

Choline and phosphatidylcholine are so ubiquitous in 
the food supply that a deficiency syndrome in humans 
has not yet been proven (see discussion below). The 
rat requires cystine for hair formation. This require- 
ment may increase the demand for methionine and the 
methyl groups of choline relative to the human. There 
are certain clinical situations which act to increase de- 
mands for choline, and therefore might be more likely 
to result in organ dysfunction secondary to choline 
deficiency. 

Hepatic complications associated with total par- 
enteral nutrition (TPN), which include fatty infiltration 
of the liver and hepatocellular damage, have been re- 
ported by many clinical groups, z46 Frequently, TPN 
must be terminated because of the severity of the asso- 
ciated liver disease. It is possible that some of the liver 
disease associated with TPN is related to choline 
deficiency. When rats were fed intravenously with 
choline-free TPN solutions (4.25% FreAmine II in 25% 
glucose), they developed fatty infiltration of the liver, 
and had elevated serum levels of conjugated bilirubin 
and transaminases. 247 In these animals, oral or intrave- 
nous supplements of choline were effective in revers- 
ing hepatic lipid accumulation. This finding suggests 
that these rats were choline-deficient and that the 
methyl groups supplied by methionine within the TPN 

342 J. Nutr. Biochem., 1990, vol. 1, July 



solution were not available in adequate amounts or 
were not utilized to spare choline requirements. Other 
investigators, however, have observed that intrave- 
nously-administered choline did not prevent fatty liver 
in rats treated with TPN. 248 

Amino acid-glucose solutions used in TPN of hu- 
mans contain no choline. 9'249 The lipid emulsions used 
to deliver extra calories and essential fatty acids dur- 
ing total patenteral nutrition contain choline in the 
form of phosphatidylcholine (20% emulsion contains 
13.2 txmol/ml.). 9 Butt e t  al .  25° reported that plasma 
choline concentrations were decreased in TPN pa- 
tients at the same time that liver dysfunction was pres- 
ent. Malnourished humans, at the time they were re- 
ferred for TPN therapy, had significantly lower plasma 
choline concentrations than did well-fed control sub- 
jects. 9'249 Plasma choline concentrations in these pa- 
tients declined further when they were treated with an 
amino acid-glucose solution lacking choline during the 
first week of therapy. 9 However,  when patients were 
treated with lipid emulsion as well as an amino acid- 
glucose solution, their plasma choline concentrations 
rose slightly. Neither group received sufficient choline 
to restore plasma choline concentrations to normal. 
We calculated that humans treated with TPN required 
1,000 to 1,700 ixmol of choline-containing phospholipid 
per day during the first week of TPN therapy to main- 
tain plasma choline levels. 9 Enteral food supplements, 
which contained choline, contributed to the rising 
plasma choline observed after the first week of TPN 
therapy. Malnourished humans with cirrhosis who 
were fed enterally also had diminished plasma choline 
content. ~0 

Conditions that enhance hepatic triglyceride syn- 
thesis (such as carbohydrate loading) increase the re- 
quirement for the choline-containing lipoprotein en- 
velope surrounding these compounds in plasma. TM 

Thus, treatment of malnourished patients with high- 
calorie TPN solutions, at a time when choline stores 
are depleted, might cause hepatic dysfunction. The 
definitive experiment, in which supplemental choline 
is administered and found to decrease the incidence of 
hepatic dysfunction during TPN, has not yet been per- 
formed. Until such data are available, it is impossible 
to state that humans require choline during TPN. The 
information available to date only suggests that this 
may be so. 

Bypass surgery involving large segments of the 
bowel (i.e., to produce weight loss in very obese hu- 
mans) is associated with fatty liver. In obese rats 
which have had 90% of their small intestine bypassed, 
fatty liver develops. Choline supplementation pre- 
vents this, and choline deficient diets in such patients 
exacerbate the accumulation of fat in the liver. 252 

Pregnancy is associated with increased require- 
ments for tissue (fetus) biosynthesis. As discussed ear- 
lier, a placental transport system withdraws choline 
from mother into fetus. The choline concentration of 
the liver fell from a mean of 130 nmol/g in adult non- 
pregnant rats to 38 nmol/g in late pregnancy. 253 Preg- 
nant women, especially those in their third trimester, 
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are particularly susceptible to development of fatty 
liver, and it has been suggested that this may be re- 
lated to an increased choline requirement. TM The neo- 
nate requires especially large amounts of choline to 
sustain rapid tissue growth, yet the rate of d e  n o v o  
biosynthesis of choline is minimal in the newborn (see 
earlier discussion of the methyltransferase). For this 
reason choline deficiency associate fatty liver is easi- 
est to induce in young, growing mammals. 127 

Experimental choline deficiency in humans 

We have characterized the effects of making normal 
humans choline deficient. 255 For a week at the begin- 
ning and end of our study, healthy human subjects ate 
a diet that contained choline, while for 3 weeks in the 
middle of the study the subjects may, or may not, have 
eaten a diet containing choline. The choline content of 
the deficient diet was 13 mg/70 kg body weight/day, the 
choline-containing diet contained 713 mg/70 kg body 
weight/day. Both diets delivered 40 Kcal/kg body 
weight (10% protein, 35% fat, 55% carbohydrate) in 
the form of liquid shakes. The diet met the recom- 
mended daily allowance for all amino acids, vitamins 
and minerals; of special interest--folate (300 ixg/70 kg 
body weight/day) and vitamin Bi2 (9 ixg/70 kg body 
weight/day). The protein source was a-soy protein 
(STA-PRO 3200, Central Soya) which contained ade- 
quate amounts of methionine (921 mg/70 kg body 
weight/day). Six subjects were fed the choline- 

experimental diet 
standard control or standard 

diet choline deficient diet '3t i 
12 i ~ Control  

] i  O Deficient 

6 ~ 
0 5 10 15 20 25 30 35 

Days 
Figure 8 Plasma chol ine concentrations in humans during inges- 
tion of chol ine deficient or control diets. Healthy human volunteers 
were fed a semisynthetic diet containing choline for the first and 
last weeks of the study (days 1 to 7 and days 29 to 35). For three 
weeks (days 8 to 28), eight of the subjects ingested the same 
semisynthetic diet devoid of chol ine (deficient) and six subjects 
ingested the diet containing chol ine (control). Plasma choline was 
determined using a mass spectrometric method)  8 Data are ex- 
pressed as mean _+ SEM Taken from Zeisel et al. 255 with permis- 
sion. 
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containing (control) diet during the experimental pe- 
riod, 8 subjects were fed the choline deficient (defi- 
cient) diet during the experimental period. 

Plasma concentrations of choline dropped signifi- 
cantly in the deficient group (decreased in all subjects) 
between day 7 and day 28 (period on defiient diet); 
there were no changes observed in the control group 
(Figure 8). As soon as the deficient subjects were re- 
turned to a choline-containing diet their plasma 
choline concentrations returned to normal. The drop 
in plasma choline concentrations associated with in- 
gesting a choline deficient diet observed in these hu- 
mans is similar to that which was observed in rats.~58 
Malnourished humans present with plasma choline 
concentrations that are similar to those observed in 
our choline deficient subjects on day 28. 9'10'249 Humans 
deprived of choline appear not to be able to make up 
this dietary deficit by the de novo biosynthesis path- 
way (see earlier discussion)mtherefore, it is likely that 
choline is an essential nutrient for humans. 
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